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Vertical stability of bubble chain: Multiscale approach
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Abstract

Linear stability is investigated of a uniform chain of equal spherical gas bubbles rising vertically in
unbounded stagnant liquid at Reynolds number Re = 50–200 and bubble spacing s > 2.6 bubble radii.
The equilibrium bubble positions are questioned for their stability with respect to small displacements in
the vertical direction, parallel to the chain motion. The transverse displacements are not considered, and
the chain is assumed to be laterally stable. The bubbles are subjected to three kinds of forces: buoyant, vis-
cous, inviscid. The viscous and inviscid forces have both pairwise (local) and distant (nonlocal) compo-
nents. The pairwise forces are expressed by the leading-order formulas known from the literature. The
distant forces are expressed as a linear superposition of the pairwise forces taken over several farther neigh-
bours. The stability problem is addressed on three different length scales corresponding to: discrete chain
(microscale), continuous chain (mesoscale), bubbly chain flow (macroscale). The relevant governing equa-
tions are derived for each scale. The microscale equations are a set of ODE�s, the Newton force laws for the
individual discrete bubbles. The mesoscale equation is a PDE for bubbles continuously distributed along a
line, obtained by taking the continuum limit of the microscale equations. The macroscale equations are two
PDEs, the mass and momentum conservation equations, for an ensemble of noninteracting mesoscale
chains rising in parallel. This transparent two-step process (micro ! meso ! macro) is an alternative to
the usual one-step averaging, in obtaining the macroscale equations from microscale information. Here,
the scale-up methodology is demonstrated for 1D motion of bubbles, but it can be used for behaviour
of 2D and 3D lattices of bubbles, drops, and solids.

It is found that the uniform equilibrium spacing results from a balance between the attractive and repul-
sive forces. On all three length scales, the equilibrium is stabilized by the viscous drag force, and destabi-
lized by the viscous shielding force (shielding instability). The inviscid forces are stability neutral and
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generate conservative oscillations and concentration waves. The stability region in the parameter plane
s � Re is determined for each length scale. The stable region is relatively small on the microscale, larger
on the mesoscale, and shrinks to zero on the macroscale where the bubbly chain flow is inherently unstable.

The shielding instability is expected to occur typically in intermediate Re flows where the vertical bubble
interactions dominate over the horizontal interactions. This new kind of instability is studied here in a great
detail, likely for the first time. Its relation to the elasticity properties of bubbly suspension on different
length scales is discussed too. The shielding force takes the form of a negative bulk modulus of elasticity
of the bubbly mixture.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

One-dimensional arrays of interacting particles are of high interest, both on their own, and as a
prelude to two and three spatial dimensions (Bernasconi and Schneider, 1981). The one-dimen-
sionality usually makes the problem tractable or at least near-tractable (Mattis, 1993). This holds
equally well for dispersed particles subjected to hydrodynamic forces. In-line interactions com-
monly occur in various flow situations, e.g. aerosols and atmospheric problems (Pruppacher
and Klett, 1998), sprays and combustion (Sirignano, 1999), granular flows (Hinch and Saint-Jean,
1999), sedimentation (Happel and Brenner, 1965; Dixon et al., 1976), fluidized beds (Werther,
1977; Foscolo and Gibilaro, 1984; Broadhurst, 1986), and also in gas–liquid systems (e.g. Harper,
2001; Liger-Belair and Jeandet, 2002), which is the topic of the present study. The uniform bubble
chain possesses the translational symmetry, where all particles are subjected to the same force law.
Ideally, the chain is infinite. However, finiteness is needed both in calculations and measurements.
Therefore, the fixed-end boundary condition is employed in modelling, and the continuous gen-
eration of bubbles in experiments. Both correspond to observing only a finite segment within a
virtually infinite chain.

Continuously generated uniformly spaced bubble chains passing through finite layers of quies-
cent liquids do exist and have been observed in many experiments, in ranges of the Reynolds and
other relevant numbers. This means that they are both vertically and laterally linearly stable; other-
wise we could not produce them. The bubble formation process can be quite complicated in real
systems, and sophisticated ways of bubble generation have to be used to control it. Usually, the
bubble size and spontaneous formation frequency have been measured (Coppock and Meiklejohn,
1951) and coalescence phenomena studied (Nevers and Wu, 1971). Recently, acoustic emissions
generated by a bubble chain has been investigated too (Manasseh et al., 2004). The chain speed
is higher than the single bubble speed due to the collective drag reduction (e.g. Miyahara et al.,
1984; Zhang and Fan, 2003). This so-called shielding effect is particularly strong at low bubble
spacing, s less than 10, say. The shielding is typical for the strictly in-line arrangement where a bub-
ble travels in the wake of the preceding bubble (local interaction), or, more generally, in the liquid
disturbed by all preceding bubbles (distant interactions). The shielding effect is in a severe contrast
with the hindrance effect that results in higher collective drag of bubbles rising in general positions,
which is the usual case of real bubble suspensions (e.g. Richardson and Zaki, 1954), see Fig. 2.
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Although bubble chains have been observed and studied for a long time, little attention has
been paid to their vertical and lateral stability. Nevertheless, certain achievements have been
reached. In the inviscid limit, the chain is vertically unstable (Harper, 1970; Galper and Miloh,
1998; Voinov, 2001). The only interaction force is the repulsive inertial force �s�4 + O(s�6) com-
ing from the Bernoulli effect due to higher pressure between the bubbles. At high Re, small vis-
cosity effects result in vertical stabilization. Harper (1970) develops an analytical theory based
on the boundary layer approximation. The trailing bubble passes through the fluid that was in
the boundary layer of the previous bubble and was given an upward velocity. The trailing drag
is therefore lower. The drag difference is an attractive force that compensates for the inertial repul-
sion and produces a stable equilibrium. Because each bubble contributes to the velocity distur-
bance, the drag decreases along the line progressively, and the chain is more and more
compressed due to the strong cumulative effect of all preceding bubbles. The viscous diffusion
of the velocity disturbances between the bubbles is neglected, which has two important conse-
quences: the theory applies only to short chains (actually only to a two-bubble chain–bubble pair),
and, the trailing drag is independent of the bubble spacing, which is not true in reality. Harper
(1997) improves the original theory by accounting for the vorticity diffusion in the bubble wake
and obtains the trailing drag decreasing with decreasing bubble spacing. Except for low bubble
spacing, his result is in a good quantitative agreement with the full numerical solution to the axi-
symmetric flow past a bubble pair calculated by Yuan and Prosperetti (1994) at intermediate
Re = 50–200. Recently, a stable bubble pair in a similar range of Re has been found in experi-
ments (Sanada, 2005). To the author�s knowledge, there are no rigorous results for longer bubble
chains at the moderate Re. The main drawback of the Harper�s theory is the progressive drag
reduction that excludes the uniform spacing and leads to increasing bubble velocity downchain.
To keep the picture realistic, one must take into account the temporal viscous decay of the veloc-
ity disturbances created by the passing bubbles. If the disturbances decay quickly enough, the
drag converges fast, and the front part of the chain with an uneven spacing is short. Disregarding
this front part is equivalent to imposing the fixed-end boundary condition. Based on this reason-
ing, a simple force-law model is developed for dynamic behaviour of longer chains at Re = 50–200
(Ruzicka, 2000, referred to as R1). The formulas for the relevant pairwise forces at the leading
order are taken from the literature and the unknown distant forces are modelled by the linear
superposition of the local forces, because of lack of anything better. The model indicates a pos-
sibility for the chain vertically stability. At smaller Re = 0.2–35, it follows from experiments by
Katz and Meneveau (1996), that the inertial repulsion is not strong enough to resist the viscous
attraction and the bubbles coalesce. In the viscous limit, the chain is vertically unstable again.
Here, the uniform spacing is not a result of a balance between attractive and repulsive forces,
but merely reflects the fact that evenly spaced bubbles have the same drag and rise at the same
speed, faster at low spacing (e.g. Sonshine and Brenner, 1966).

Since we are interested in strictly 1D problem (stability in vertical direction), the lateral chain
stability is only briefly mentioned. Both the inviscid (Harper, 1970; Voinov, 2001) and viscous
(Lerner and Harper, 1991) chains are laterally unstable, because there is no restoring force per-
pendicular to the direction of motion. Small viscosity does not stabilize the chain laterally (Har-
per, 1970). On the other hand, such a restoring force can be generated by an uneven distribution
of a surfactant over the bubble surface (Harper, 1970; Lerner and Harper, 1991). At the interme-
diate Re, it seems that there are no rigorous results. A subtle point is the relation between the
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lateral behaviour of a single bubble and bubble chain. The instability mechanism is likely differ-
ent: the former requires a deformed bubble (presence of destabilizing force—shedding of vorticity
from edges of larger curvature, two threads of opposite and alternating signs), while the latter oc-
curs at a train of spherical bubbles (absence of stabilizing force). The bubble path instability (air
in water) occurs for Re larger than 500–600, say (Magnaudet and Eames, 2000; Vries et al., 2002).

It follows that our knowledge on the chain stability at the intermediate Reynolds number is
rather weak. This region is well beyond the power of analytical techniques, and we are on mercy
of experiments, numerical simulations, and simple semi-empirical models. For instance, making a
finite list of closed-form formulas for forces acting on a bubble is a common example of the last
approach. If the list contains all relevant terms, and the formulas are correct at the leading order,
it may be a success. There is an implicit hope that the results will also be leading-order correct.
This approach is undertaken in R1, where a simple model for bubble chain is developed and some
typical solutions are presented to illustrate the model ability and to support the modelling con-
cept. Stemming from this model, the present study concerns the vertical stability of bubble chain
on three different length scales. The study features the following aspects that have not been paid
enough attention so far: (i) detailed analysis of chain vertical stability at moderate Re, (ii) phe-
nomenon of shielding instability, (iii) effects of distant coupling between bubbles, both viscous
and inviscid, (iv) multiscale approach and scale-up methodology, how to get from pairwise forces
to macroscopic equations for bubbly mixtures, without averaging.
2. Physical model

The governing equations for the discrete chain were introduced and extensively discussed in R1,
and only briefly are presented here. They apply to the microscale, Section 3.1, and are also used
for deriving the equations for the larger scales in Sections 3.2 and 3.3.

Consider a one-dimensional array of N spherical nondeformable incompressible equal-sized gas
bubbles of radius r arranged in a vertical line rising freely under buoyancy in an unbounded body
of a quiescent liquid at a steady speed m with respect to the laboratory, Fig. 1a. Bubbles� positions
are expressed by departures yi = xi � xis from their equilibrium positions xis with uniform spacing
d. The centre–centre distance between bubbles i and j is dij = sign(j � i) Æ (yj � yi) + jj � ijd and the
particular distance di,i+1 is denoted by di. Bubbles� velocities relative to the liquid are mi ¼ m þ _yi.
After scaling by r and m, the dimensionless variables are:
ui ¼ yi=r; s ¼ d=r; si;j ¼ di;j=r; si ¼ di=r; time ¼ t=ðr=vÞ; speed ¼ 1þ _ui. ð2:1Þ
Three forces act on each bubble: buoyant, viscous, and inviscid (inertial, potential) forces. The
latter two have both local and nonlocal components. The local force on bubble i comes from
the nearest neighbours (i ± 1) and the nonlocal force from the distant neighbours (i ± 2,3, . . .).
The bubbles are endowed with the added mass and the coefficient is taken 0.5 for all bubbles. This
is sensible since in a uniform array all bubbles have the same coefficient and its value departs from
0.5 only at very low spacing, not considered here (e.g. Cai and Wallis, 1992; R1 p. 1155). The
dimensionless forces are as follows. The buoyancy force applies to all bubbles:
B ¼ 2gr=v2. ð2:2Þ
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Fig. 1. Bubble chain. (a) Definition sketch, (b) microscale: common bubble chain (mass–spring system), (c) mesoscale:
bubbles continuously distributed along vertical line (one continuous string), and (d) macroscale: ensemble of
continuous strings (bubbly chain flow).
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The local viscous force on bubble i is the drag force
Di ¼ ð3=4Þð1þ _uiÞ2Ci ð2:3Þ
with the local drag coefficient
Ci ¼ ð48=ReÞð1� F i=Re0.5Þ ð2:4Þ
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and the Reynolds number Re = 2rm0/g, where m0 is the bubble terminal velocity and g, the liquid
kinematic viscosity. The local drag factor is
F i ¼ 2.2þ 2.5ðsi � 2Þ�0.6. ð2:5Þ

The constant term 2.2 belongs to an isolated bubble (Moore, 1963) and the distance-dependent

term 2.5(si � 2)�0.6 is the additional drag reduction due to the shielding effect by the preceding
bubble (Yuan and Prosperetti, 1994). Eq. (2.5) is valid for si P 2.6. Di is a pairwise long-range
attractive force �s�0.6 caused by the wake suction. The distant viscous force is
V i ¼ ð3=4Þð1þ _uiÞ2C	
i ð2:6Þ
with the distant drag coefficient
C	
i ¼ 48Re�1.5F 	

i . ð2:7Þ

The distant drag factor
F 	
i ¼

Xiþpþ1

j¼iþ2

2.5ajðsi;j � 2Þ�0.6 ð2:8Þ
is taken as a linear superposition of the pairwise shieldings generated by p preceding distant neigh-
bours i + 2, i + 3, . . ., i + (p + 1). The scale-estimated damping factor
aj ¼ expð�2si;j=ReÞ ð2:9Þ

accounts for the viscous dissipation of the disturbances introduced by the wakes of the preceding
bubbles and ensures the convergence of (2.8) at p ! 1.

The local inviscid force is (Lamb, 1932; Harper, 1970; Yuan and Prosperetti, 1994)
P i;i�1 ¼ð3=4Þð1þ _ui�1Þ2Ci;i�1; ð2:10Þ
P i;iþ1 ¼ð3=4Þð1þ _uiþ1Þ2Ci;iþ1 ð2:11Þ
with the symmetric force coefficient (Ci,j = Cj,i)
Ci;j ¼ 12s�4
i;j ; ð2:12Þ
which is independent of Re. It is a pairwise short-range repulsive force �s�4 from the potential
flow theory, generated by neighbours i � 1 and i + 1 on both sides. The distant inviscid force is
taken as a linear superposition of the pairwise forces Pi,j generated by q distant neighbours on
both sides i ± 2, i ± 3, . . ., i ± (q + 1),
Li ¼ ð3=4Þ
Xi�2

j¼i�q�1

ð1þ _ujÞ2Ci;j ðleft neighbours in Fig.1aÞ; ð2:13Þ

Ri ¼ ð3=4Þ
Xiþqþ1

j¼iþ2

ð1þ _ujÞ2Ci;j ðright neighbours in Fig.1aÞ. ð2:14Þ
The subscripts i and j may be omitted at the quantities defined by (2.3)–(2.14) and these appear
simply as D,C,F, . . .,Cp,L,R.
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The nonlinear dimensionless equations of motion of N individual bubbles in the chain read:
€ui ¼ Bþ ð3=4Þð�Di þ P i;i�1 � P i;iþ1 þ hV i þ mðLi � RiÞÞ � fi; i ¼ 1; 2; 3; . . . ;N . ð2:15Þ
These are the momentum equations written in deviations from uniformity, so that they apply to
the reference frame fixed with both the chain and the laboratory, see Fig. 1a. The mass equation is
trivial, N = constant. The unknown relative strengths of the viscous and inviscid distant forces in
(2.15) are expressed by h and m, both P 0. The chain is subjected to the fixed-end boundary con-
dition, where identical bubbles with the same spacing are put to both ends of the N-chain, i.e.
ui ¼ _ui ¼ 0 and si = s for both i < 1 and i > N. This condition recovers the perfect translational
symmetry of an infinite uniform array, because the end bubbles do not feel the boundaries. Since
the stability concerns virtual motions near equilibrium, the condition does not matter. This con-
dition can be applied to a continuously generated chain passing through a finite layer of liquid, or
to an active �window� of length N in a long chain.

The model has two main parameters, Reynolds number Re and steady bubble spacing s. Fur-
ther parameters relate to the distant coupling. p and q are the numbers of viscous and inviscid
distant neighbours considered and determine the spatial range of the nonlocal interactions. h
and m are the weight factors of the viscous and inviscid distant forces and express the strength
of the nonlocal forces relative to the local forces. Bubble radius r is used for the scaling and ap-
pears explicitly only in the buoyancy force (2.2), which does not affect the stability. N can also be
considered as a parameter. The model is valid for Re = 50–200 and si > 2.6, where the drag for-
mula (2.5) holds.

The nonlinear system (2.15) has an equilibrium solution of uniform steady spacing s and speed
m, whose linear stability with respect to strictly 1D disturbances along the vertical (x-axis in
Fig. 1a) is studied. Since the hydrodynamic forces depend on both the distances and velocities,
each force gives two linear terms depending on either the distances (index d) or the velocities
(index m). The linearized dimensionless equations (2.15) then read
€ui ¼ ð3=4ÞðDd þ Dv þ Pd þ Pv þ hðV d þ V vÞ þ mðLRd þ LRvÞÞ; i ¼ 1; 2; 3; . . . ;N ; ð2:16Þ
where (Pi,i�1 � Pi,i + 1) = P and (Li � Ri) = LR for brevity. The individual force terms are given
by (3.1.3), (3.1.8) and (3.1.9).

The stability features of the force terms in (2.16) are investigated, both separately and in com-
binations. In the discrete case, the eigenvalues of the corresponding Jacobians are computed using
the standard routines as implemented in Mathematica 4.0 (Wolfram, 1999). The Jacobi matrix
must be large enough to cover the whole coupling range. For local coupling, chain length is
N = 2–10. For distant coupling, p, q are 1–3. In some cases, p is taken 1–6, to demonstrate the
strong cumulative effect of the shielding. Most of the results are calculated with h = m = 1, which
is considered as the maximum values of the weight factors. The purpose is to demonstrate the
qualitative effect of the distant coupling on the chain stability. Therefore, only a limited selection
of results is presented. The calculations show that the stability results are independent of N. It is
therefore anticipated that they are valid also for longer chains. Physically, there is no apparent
reason for the contrary: adding a bubble to the chain does not disturb the governing equations.
Likely, we lack a theorem on the invariance of the spectrum with respect to the scale-up of a
matrix of a given fixed pattern.
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3. Results

3.1. Microscale: discrete bubble chain

The microscale model describes a chain of individual bubbles rising steadily at a uniform equilib-
rium spacing. These chains can be produced in laboratory and the results of this section can be veri-
fied experimentally, see Fig. 1b. The corresponding mechanical system is the classical mass–spring
system, the archetypemodelling concept for studying interactions in arrays of atoms andmolecules.

The microscale governing equations for Section 3.1 are (2.15) and (2.16). Eq. (2.15) admits the
equilibrium solution ui ¼ _ui ¼ €ui ¼ 0, with steady speed m and uniform spacing s. The dimensional
chain speed
Fig. 2
arran
positi
e.g. S
v ¼ 8gr
3ðC � hC	Þ

� �0.5
ð3:1:1Þ
is determined by the balance between the buoyant and viscous forces, because the inviscid forces
cancel from (2.15) for the symmetry reason. The speed depends on r, s, Re and h. The speed obeys
the single bubble formula where the collective chain drag (C � hC*) is always lower then the sin-
gle bubble drag C0. Also, the single bubble drag is lower than the drag of hindered rise of bubbles
in general positions, see Fig. 2.

3.1.1. Nearest-neighbour approximation
If the distant effects are negligible (h,m = 0), the force equation (2.16) reduces to
€ui ¼ ð3=4ÞðDd þ Dv þ Pd þ PvÞ ði ¼ 1; 2; . . . ;NÞ; ð3:1:2Þ
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where the four linear force components are:
Dd ¼ �C0ðuiþ1 � uiÞ ðviscous shieldingÞ ½�ux�
Dv ¼ �2C _ui ðviscous dragÞ ½�ut�
Pd ¼ C0

pðuiþ1 � 2ui þ ui�1Þ ðinviscid repulsionÞ ½uxx�
Pv ¼ �2Cpð _uiþ1 � _ui�1Þ. ðinviscid repulsionÞ ½�utxx�:

ð3:1:3Þ
The prime denotes the absolute value of the spatial derivative of the force coefficients C and Cp in
the equilibrium. Only two of these hydrodynamic forces do have mechanical counterparts in the
classical mass–spring system: Dv corresponds to the friction force and Pd to the elastic spring force
(e.g. Main, 1984). The other two forces Dd and Pv are purely hydrodynamic. The drag force Dv is
the only dissipative force. The other three are conservative. Pd and Pv are the potential forces,
hence conservative by definition. The viscous shielding component Dd depends only on one spatial
variable and is therefore conservative too (its closed-path integral equals zero). This may be sur-
prising at a force of viscous origin. Anticipating the continuum limit, the continuous counterparts
of the discrete forces are shown in brackets in (3.1.3).

3.1.1.1. Equilibrium stability. Each force component in (3.1.2) separately gives an equilibrium
point with certain stability features. These features contribute to the stability of the full chain,
see Table 1.

The shielding Dd is the main source of instability (unstable saddle), which leads to chain frag-
mentation and clustering via positive feed-back €ui � _ui. This kind of instability caused by the
shielding effect, peculiar to the in-line bubble interactions, is therefore called the shielding instabil-
ity. The drag Dv is the sole source of stability (stable node), €ui � � _ui. Both Pd and Pv are stability
neutral (centre points) and generate conservative oscillations. The stability of the individual com-
ponents is independent of s and Re.

At low Re, the chain is governed by the viscous force Vis = Dd + Dv with an unstable equilib-
rium due to Dd (unstable saddle), so that viscous chains split into fragments. At high Re, the chain
is governed by the stability neutral inertial force Pot = Pd + Pv (centre point) and undergoes oscil-
lations. The complete force in (3.1.2) gives two kinds of equilibria, depending on s and Re, see
Fig. 3 (bold line). This is the main result of this section. At low s and high Re, the chain is stable
and recovers the uniformity via damped oscillations (stable focus). At high s and low Re, the chain
is unstable due to the shielding instability, and splits into fragments via oscillations with diverging
amplitudes (unstable saddle-focus).

Note that while the existence of the equilibrium spacing results from a balance between the vis-
cous attraction (Dd) and the inviscid repulsion (Pd and Pv), its stability results from a competition
between two viscous forces: stabilizing drag term (Dv) and destabilizing shielding term (Dd).
Although the equilibrium point is a property of a linear system, its character is determined by
roots of the characteristic polynomial of the Jacobi matrix, which is a nonlinear procedure. There-
fore, the character of the equilibrium of composed forces cannot be obtained by simply adding the
characters of the equilibria of individual forces. Nevertheless, some features can be predicted. For
instance, hydrodynamic arrays should be less stable than mechanical arrays, because they contain
the unstable shielding force. For completeness, Table 1 shows the stability features also for
combinations of forces without direct physical meaning.



Table 1
Discrete chain

Local Distant

Viscous Inviscid Viscous Inviscid

1 2 3 4 5 6 7 8 9 10

Discrete chain

Individual
1 Term Dd Dv Pd Pv Vd Vv LRd LRv

2 Equilib S N C C S N C C
3 Stab u s n n u u n n

Combined Equilib Stab
Local
4 Vis * * S u
5 Pot * * C n
6 Dis * * C/SF n/u
7 Vel * * F s
8 Con * * * SF u
9 Mec * * F s
10 Hyd * * C/SF n/u
11 Full * * * * F/SF s/u

Distant
12 TVis * * * * S u
13 TPot * * * * C n
14 Tdis * * * * C/SF n/u
15 TVel * * * * F s/u
16 Full * * * * * * * * F/SF s/u

Continuous chain

Coeff.An
17 A1 1 2
18 A2 1
19 A3 1 2
20 A4 1 3 2
21 A5 2 1
22 A6 1 2
23 A7 1

Summary of stability results. Individual forces of (2.16) are listed in row 1; local terms in columns 1–4, distant terms in
5–8. Equilibrium type is specified in row 2, its stability in row 3. Combined forces are listed in rows 4–16, terms involved
are indicated by stars. Equilibrium type is specified in column 9, its stability in 10. Link between discrete (2.16) and
continuous (3.2.4) equations is shown in rows 17–23. Each force in row 1 generates one or more summands of An,k in
(A1). Numbers in rows 17–23 are ks. Legend: Equilibrium type: C—centre, F—focus, N—node, S—saddle, SF—
saddle-focus, C/SF—either C or SF depending on s, Re. Stability: s—stable, u—unstable, n—neutrally stable, n/u—
either n or u depending on values of s and Re.
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3.1.1.2. Small oscillations. The main oscillatory force is the inertial force Pd and the bubble chain
then reduces to the frictionless mechanical mass-spring system:
€ui ¼ ð3=4ÞPd ¼ cðuiþ1 � 2ui þ ui�1Þ; c ¼ ð3=4ÞC0
p ¼ 36s�5; i ¼ 1; 2; . . . ;N . ð3:1:4Þ
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The spring constant c is the stiffness of a hypothetical hydrodynamic spring, and falls quickly with
the equilibrium bubble pitch, �s�5. The natural frequency of oscillations is x0 = c0.5 = 6s�2.5. The
spring modulus of elasticity is cs (Hirose and Lonngren, 1985). The linear system (3.1.4) can be
decoupled into the normal modes. The normal modes of chains with 1–7 bubbles are calculated,
see Fig. 4a and b and Table 2. The effect of the hydrodynamic shielding Dd on the mechanical
oscillations can be seen from Figs. 4c and d and 5. The other oscillatory force is the inertial force
Pv that gives similar oscillations like Pd. The full hydrodynamic array (3.1.2) cannot freely oscil-
late due to damping by Dv and destabilizing by Dd.

3.1.1.3. Discrete waves. Inserting wave solution un(t) � exp[i(kns � xt)] into (3.1.4) gives disper-
sion relation and phase velocity:
x ¼ �2x0 sinðks=2Þ; ð3:1:5Þ
c ¼ x=k ¼ �ð2x0=kÞ sinðks=2Þ. ð3:1:6Þ
Here, i is the imaginary unit; ns, the spatial coordinate; x, the angular frequency; k, the wave
number; k, the wavelength, k = 2p/k. The reflection at boundaries is not considered and (3.1.4)
gives two wave modes with normal dispersion. The frequency falls to zero at kc = 2p/s, where
the discontinuity scale kc = s is reached. For long waves, k ! 0, the discrete nature of the chain
is irrelevant and the dispersion disappears, x = ±x0sk and c = x0s = 6s�1.5. The other oscillatory
force Pv, which is purely hydrodynamic, €ui ¼ �2Cpð _uiþ1 � _ui�1Þ, gives only one mode with normal
dispersion moving upchain,
x ¼ sx2
0 sinðksÞ ð3:1:7Þ
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Fig. 4. Discrete chain. Effect of chain length N on normal modes. Elastic force, Pd: (a) squares of normal frequencies
(eigenvalues), and (b) amplitudes of normal modes. The number of different amplitudes goes as (N/2) for even N, and as
(3/2 + N/2) for odd N. Elastic + shielding force, Pd + Dd: (c) frequencies, and (d) amplitudes. Other parameters: s = 5,
Re = 100.

Table 2
Discrete chain

Chain
length N

1 2 3 4 5 6 7

Mode no. 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7

Bubble no.

1 + + + + + + + + + + + + + + + + + + + + + + + + + + + +
2 – + – 0 + – – + + – – 0 + + – – – + + + – – – 0 + + +
3 + – + + – – + + 0 – 0 + + + – – + + + + – – – + +
4 – + – + – + 0 – + – + + – – + – 0 + 0 – 0 +
5 + – + – + + – + + – + + – – + – – +
6 – + – + – + – + – 0 + – +
7 + – + – + – +

Phase structure of normal modes of chains with N = 1–7 bubbles generated by local elastic force Pd (+: in phase, �: out
of phase).
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Fig. 5. Discrete chain. Potential well of bubble interactions in nearest-neighbour approximation. Dotted line: elastic
force Pd. Full lines: effect of shielding force Dd (descending: Re = 200, 120, 90, 70, 50). Other parameters: s = 6.
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with higher kc = 2s and with the long-wave velocity c ¼ x2
0s

2 ¼ 36s�3. Thus, both inertial forces
Pd and Pv can generate coherent motions in form of longitudinal concentration waves on scales
k > kc. The full hydrodynamic array (3.1.2) cannot support free waves due to presence of Dv

and Dd.

3.1.2. Effect of distant coupling
The nearest-neighbour approximation may be bad when distant interactions come into play.

Possible effects of the nonlocal coupling is investigated here. The importance of the distant forces
is expressed in two ways: by the extent of the distant range (p and q), and by the relative strength
of the distant coupling (h and m).

The viscous distant forces in (2.16) take the form
V d ¼ �
Xpþ1

n¼2

C	0
n ðuiþn � uiÞ ½�uxx;�uxxx; . . . ;�ux...xðpþ1Þ-times�;

V v ¼ 2C	 _ui ½ut�;
ð3:1:8Þ
where the summation goes over p preceding distant neighbours and C	0
n is the absolute value of the

spatial derivative of the nth summand in (2.7). The inviscid distant forces in (2.16) take the form
LRd ¼ C0
p

Xqþ1

n¼2

ðnÞ�5ðuiþn � 2ui þ ui�nÞ ½uxxxx; uxxxxxx; . . . ; ux...x 2ðqþ1Þ-times�;

LRv ¼ �2Cp

Xqþ1

n¼2

ðnÞ�4ð _uiþn � _ui�nÞ ½�utxxxx;�utxxxxxx; . . . ; �utx...x 2ðqþ1Þ-times�;
ð3:1:9Þ
where the summation goes over q distant neighbours on both sides. While (3.1.8) presents a strong
cumulative effect of the neighbours on the one side only, the contributions in (3.1.9) come from
neighbours symmetrically placed on both sides and tend to cancel. Further, (3.1.9) falls quickly
with both the spacing (Cp � s�4,C0

p � s�5) and the number of neighbours (�n�4 and n�5). It
suggests that the viscous coupling could be more important than the inviscid one.
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None of the four distant forces (3.1.8) and (3.1.9) has a mechanical analogue. Three of them are
conservative (Vd,LRd,LRv) and one is antidissipative (Vv). Vv expresses the net drag reduction due
to the distant coupling, which is equivalent to a negative viscosity coefficient (�antidrag�). In (2.16),
hVv must not be smaller than the local drag Dv to keep the model realistic, which gives a natural
limit for h. In the continuum limit, the distant forces generate higher spatial derivatives that are of
high physical importance: the distant forces are able to disperse waves. The viscous shielding Vd

gives the forward derivatives up to the order (p + 1), first of which �uxx weakens the positive dif-
fusion term +uxx produced by the local force Pd in (3.1.3). The inviscid repulsions LRd and LRv

give the central derivatives up to the order 2(q + 1). The higher derivatives can be interpreted as a
tendency to long-range dynamic diffusion of bubbles (utt � uxxxx) and bubble momentum
(utt � utxxxx).

3.1.2.1. Effect on stability, oscillations, and waves. Like the local shielding (Dd), also the distant
shielding Vd destabilizes the chain (unstable saddle), see Table 1. However, unlike the local drag
(Dv), the distant drag Vv destabilizes the chain (unstable node). Like the local inviscid forces (Pd

and Pv), also the distant inviscid forces LRd and LRv are stability neutral (centre points). An
important conclusions follows: none of the distant forces can contribute to the chain stability.
The main result for the full chain is shown in Fig. 3 (thin lines). Due to the distant coupling,
the stability region reduces. Especially, at low Re and strong coupling, no stable spacing exists
and the chain splits into fragments inevitably. For completeness, the stability features of certain
combinations of the local and distant forces are also shown in Table 1. It follows that the distant
forces, either do not affect the stability features of the pairwise forces (TVis, TPot), or reduce the
stability region (TDis), or destabilize the equilibrium (TVel). For instance, with the total velocity-
related force, the stability created by the local part Dv + Pv is destroyed by the distant part
hVv + mLRv, see Fig. 6.

The inertial component LRd has a weak effect on the oscillations produced by Pd. It slightly
increases the normal frequencies, and splits the normal amplitudes that either coincide or are zero
into slightly larger and smaller ones, so that the bubbles originally at rest start to move slightly. It
does not affect the modal structure in Table 2. The shielding component Vd acts like its local coun-
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Fig. 6. Discrete chain. Destabilizing effect of increasing number of viscous distant neighbours p: largest eigenvalue
becomes positive. Other parameters: (a) Re = 50, q = 3, h = 1, m = 1; and (b) s = 3, q = 3, h = 1, m = 1.
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terpart Dd and tends to destroy of oscillations by additional deformation of the potential well in
Fig. 5.

The forces LRd and LRv produce waves with the dispersion relations
Term mLRd : x2 ¼ 4mx2
0

Xqþ1

n¼2

n�5sin2ðnks=2Þ ðtwo modesÞ;

Term mLRv : x ¼ msx2
0

Xqþ1

n¼2

n�4 sinðnksÞ ðone modeÞ;
ð3:1:10Þ
cf. 3.1.5,3.1.6,3.1.7. The discontinuity scale increases with the extent q of the nonlocal range like
kc = (q + 1)s and 2(q + 1)s respectively. The long waves (k ! 0) are dispersionless and move with
velocities c2 ¼ mx2

0s
2
P
n�3 and c ¼ mx2

0s
2
P
n�3 respectively. Vd acts like Dd. The distant drag Vv

alone causes unphysical explosion of waves, but in combination with its local counterpart Dv, it
only reduces the dissipation.

3.1.2.2. Coupling strength. There is a natural limit on the viscous coupling given by the denomi-
nator of (3.1.1), h < C/C*. For the strongest possible interaction (low s, low Re, infinite p), we
obtain h < 0.34, which is somewhat lower than an estimate 0.44 obtained on different grounds pre-
viously in R1. The inviscid coupling is supposed to be m < 1, because unity corresponds to a plain
superposition of the pairwise forces. These should be weakened by bubbles placed in between, as
there is no reason to think the opposite. Values of h and m can be obtained from experiments: h by
measuring the steady chain speed given by (3.1.1), and m by measuring the oscillation frequency
and the wave speed.

3.2. Mesoscale: continuous bubble chain

When an observer is sufficiently far from a long chain, its discrete nature (length scales � r, s)
cannot be resolved and one sees bubbles smoothly distributed along a line, Fig. 1c. Such a �coarse-
grained� look represents a new modelling concept. This concept applies when the disturbance
wavelength is much larger than the discrete length scale.

The step from the discrete to the continuous is facilitated by taking the continuum limit. It con-
sists in replacing the discrete positions and velocities of the individual bubbles in (2.16) with their
continuous counterparts, which are given by a smooth function u(x, t) and its derivatives:
ui�n ¼ uþ uxð�nsÞ1 þ ð1=2!Þuxxð�nsÞ2 þ ð1=3!Þuxxxð�nsÞ3 . . . ; n ¼ 0; 1; 2; . . . ;

ui�n ¼ ut þ utxð�nsÞ1 þ ð1=2!Þutxxð�nsÞ2 þ ð1=3!Þutxxxð�sÞ3 . . .
ð3:2:1Þ
These expansions may formally be of any length, but not all the terms can physically be justified.
For instance, if higher spatial derivatives producing interesting effects in models are artefacts of
insufficient truncation, these will not be detected in experiments because of absence of correspond-
ing physical mechanisms. Therefore, only physically relevant terms are retained here, those
indicated in brackets in (3.1.3), (3.1.8) and (3.1.9) for given p and q. To illustrate the effect of dis-
tant forces on the chain behaviour, four neighbours on both sides are considered, i.e. p = q = 3.
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Substituting (3.2.1) into (3.1.3), (3.1.8) and (3.1.9) gives the continuous counterparts of the local
discrete forces,
Dd ¼ �sC0ux;

Dv ¼ �2Cut;

Pd ¼ s2C0
puxx;

Pv ¼ �4sCputx;

ð3:2:2Þ
and the distant discrete forces,
V d ¼�sð2C	0
2 þ3C	0

3 þ4C	0
4 Þux� s2ð2C	0

2 þ4.5C	0
3 þ8C	0

4 Þuxx� s3ð4.5C	0
3 þ10.6C	0

4 Þuxxx�10.6s4C	0
4 uxxxx;

V v¼ 2C	ut;

LRd ¼ 0.177s2C0
puxxþ0.09s4C0

puxxxx½þ0.019s6C0
pUxxxxxxþ0.003s8C0

puxxxxxxxx�;
LRv¼�0.71sCputx�0.722s3Cputxxx½�0.233s5Cputxxxxx�0.05s7Cputxxxxxxx�.

ð3:2:3Þ

The forces must decrease with increasing s, since the interactions must fall with distance. Vd con-
verges at large s, so all terms can be retained in (3.2.3), of which uxxx is the leading-order viscous
distant term. LRd and LRv go like �s�3 + s�1 + s1 + s3, where only the first two terms can be re-
tained. This is sensible, since the term s�1 is the last converging at large s and the first generated
exclusively by the distant coupling. Therefore, uxxxx and utxxx are taken as the leading-order invis-
cid distant terms. Putting (3.2.2) and (3.2.3) at the leading order into (2.16) gives the mesoscale
dimensionless momentum equation for small departures from the uniformity of bubbles continu-
ously distributed along an infinite line:
utt ¼ �A1ux � A2uxxx � A3ut þ A4uxx þ A5uxxxx � A6utx � A7utxxx. ð3:2:4Þ
Since it is written in deviations, it applies to the reference frame fixed with both the chain and the
laboratory. In mechanics, the continuum limit brings us from a discrete atomic array to the wave
equation for a macroscopic material string. Therefore, (3.2.4) is the �hydrodynamic� wave equa-
tion. Wave behaviour depends on both forces and geometry. Since we are interested in forces,
we consider the simplest possible geometry—an infinite string without boundaries. Near the basic
state (small motions within s ± u), the thickness d of the hypothetical string (whatever it is, usually
not specified in this case), remains constant, d = const., since the transversal deformation is neg-
ligible due to the infinitesimality of u. Then, the mesoscale mass equation is trivial, s = const.

Unlike the discrete chain, the continuous chain does not directly refer to reality. It is a useful
abstract concept that provides valuable insight into dynamics of large-scale disturbances in a me-
dium whose �subgrid details� are unresolved. In mechanics, the step from atoms to continuous
wave equation spans over many orders of magnitude, and both concepts work well. Likely, the
minimum step size for the matter forget its discrete nature is much smaller. This size, if known,
indicates the necessary length-scale for the continuous models be realistic and experimentally veri-
fiable. For this reason, the stability analysis of the mesoscale model is presented in Appendix A.
On the other hand, the mesoscale concept is crucial for this study, since it serves as a bridge
between micro- and macro-scales. The link micro–meso is indicated in Table 1, and that between
meso and macro is shown in Table 3.



Table 3
Continuous chain

A1 A2 A3 A4 A5 A6 A7

Continuous chain

Term �ux �uxxx �ut uxx uxxx �utx �utxxx 1
Stability u u s n/u u/n n n 2
Viscous 1,2 1 1,2 3 2 3
Potential 1,2 1 1,2 1 4
Local 1 1 1 1 5
Distant 2 1 2 2,3 1,2 2 1 6

Bubbly chain flow

Term /x /xxx �w �/xx �/xxx �wx �wxxx 7

Summary of stability results. Seven force terms of Eq. (3.2.4) with coefficients A1–7 shown in Eq. (A1) are listed in row 1,
their stability in row 2. Rows 3–6 show origin of summands An,k, numbers are ks. Link between continuous (3.2.4) and
bubbly chain flow (3.3.4) equations is via comparing rows 1 and 7. Legend. Stability: s—stable, u—unstable, n—
neutrally stable, n/u—either n or u depending on values of s and Re.
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3.3. Macroscale: bubbly chain flow

3.3.1. Governing equations
To assess possible relevance of the in-line interactions for bubbly flows, consider a situation

when an observer looking at a continuous chain from Section 3.2 expands the view sidewise
and sees an ensemble of identical noninteracting chains, rising in parallel, see Fig. 1d. This is called
1D �bubbly chain flow�, where the vertical interactions dominate over the horizontal ones.
Neglecting the lateral forces implies absence of a horizontal length-scale. The transverse extent
of the system enables to consider the cross-section area (put to unity) and the mass flux through
it, hence a nontrivial mass equation. The corresponding mechanical problem is a homogeneous
isotropic material body with longitudinal waves propagating in one spatial direction.

The bubble concentration / is here introduced as the linear void fraction,
/ðx; tÞ � 2=ðsþ uðx; tÞÞ. ð3:3:1Þ

The formula complies with the one-dimensional character of this study where bubbles are line seg-
ments and / is the ratio (bubble size, 2r)/(bubble spacing (s + u)r). For touching bubbles (s = 2,u
= 0), u = 1, and for separated bubbles (s !1), u = 0. With infinitesimal u, neither s + u < 2 nor
even <0 can occur. Note that the concentration can also be defined as the true 3D volumetric void
fraction (4/3)p/(s + u)s2, where the bubble volume is related to an elementary cubic cell. Both def-
initions differ only by a numerical factor (2/3)p/s2. The following mass equation applies to 1D
bubbly chain flow
/t þ ½V /�x ¼ 0 ðmassÞ; ð3:3:2Þ

which is the dimensionless continuity equation. The bubble velocity V(x, t) has two components,
V = U + w. The equilibrium chain speed U relative to the laboratory is v given by (3.1.1) and
scaled by v itself, thence U = 1. In the reference frame fixed with the chain, U = 0. The concen-
tration disturbance speed w relative to the chain is identified with ut, i.e. w � ut. Both v and w de-
pend on /. In the equilibrium, u = 0, and (3.3.1) gives /0 = 2/s, which after putting into (3.1.1)
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gives the dependence v(/0). The dependence w(/) is not known and must be found with help of the
momentum equation. The linear version of (3.3.2) for small departures (/ and w) from uniformity
(/0 and U) reads
/t þ U/x þ /0wx ¼ 0 ðmassÞ. ð3:3:3Þ

The mesoscale momentum equation (3.2.4) must be written in concentrations. Using (3.3.1) as the
link between u and / and their derivatives, (3.2.4) becomes:
wt ¼ aA1/x þ aA2/xxx � A3w� aA4/xx � aA5/xxxx � A6wx � A7wxxx ðmomentumÞ; ð3:3:4Þ

where a ¼ 2=/2

0. Eqs. (3.3.3) and (3.3.4) are the macroscale governing equations. Since we are
interested in forces and not in geometry, an infinite medium is considered, and no boundary con-
ditions employed. Inserting the wave solution �exp[i(kx � xt)] into the governing equations gives
the dispersion relation. The system either recovers the uniformity by damping the wavy distur-
bances (stability), or oscillates freely (neutral stability), or breaks the uniformity (instability).
Allowing for the complex frequency to explore the temporal instability, x = xr + ixi, the factor
�exp(xit) stands at the amplitude of the solution and the sign of the imaginary part xi determines
the stability (�stable, +unstable). Both xr and xi must be real. The sign of xr indicates the direc-
tion of the wave propagation (+: upchain, �: downchain).

3.3.2. Kinematic waves
When the viscous forces dominate, (3.3.4) reduces to
0 ¼ aA1/x þ aA2/xxx � A3wþ aA4;3/xx þ aA5;2/xxxx ðmomentumÞ. ð3:3:5Þ

We want to express the disturbance speed w from (3.3.5), find wx, and substitute it into (3.3.3): the
expression
w ¼ B1/x þ B2/xxx þ B3/xx þ B4/xxxx ðmomentumÞ ð3:3:6Þ

contains the essence of the near-equilibrium dynamics. The positive Bs are: B1 = aA1/A3,
B2 = aA2/A3, B3 = aA4,3/A3, B4 = aA5,2/A3. Expressing formally the derivative wx of (3.3.6) and
putting into (3.3.3) gives the kinematic equation of small motions in terms of /,
/t þ U/x þ /0ðB1/xx þ B2/xxxx þ B3/xxx þ B4/xxxxxÞ ¼ 0 ðmassþmomentumÞ. ð3:3:7Þ
The dispersion relation of (3.3.7) reads
�xiþ Ukiþ /0ð�B1k
2 þ B2k

4 � B3k
3iþ B4k

5iÞ ¼ 0 ð3:3:8Þ

and gives
xr ¼ Uk � /0B3k
3 þ /0B4k

5;

xi ¼ /0B1k
2 � /0B2k

4.
ð3:3:9Þ
In the nearest-neighbour approximation, (3.3.7) becomes
/t þ U/x ¼ �/0B1;1/xx ðmassþmomentumÞ; ð3:3:10Þ

where the minus sign on the r.h.s. is significant, because it makes the equation �antidiffusive�. The
dispersion relation (3.3.9) then reduces to



M.C. Ruzicka / International Journal of Multiphase Flow 31 (2005) 1063–1096 1081
xr ¼ Uk;

xi ¼ /0B1;1k
2

ð3:3:11Þ
and yields an exponentially growing factor �exp(/0B1,1k
2t) at the wave mode exp[i(kx � Ukt)]

moving upchain at speed U. An important conclusion follows: the flow with local interactions
is inherently unstable and cannot support kinematic waves. The instability is caused by the local
shielding force. Indeed, the coefficient B1,1 � A1,1/A3 � Dd/Dv � (local shielding)/(drag).

The effect of the distant forces follows from (3.3.9). The term B3 causes the normal while the
term B4 the anomalous dispersion of waves. Both these are generated by the distant coupling.
In xi, the destabilizing effect of B1 � (local + distant shielding) is suppressed by B2 � (distant
shielding). An unexpected result arrives: the distant coupling plays a dual role and can stabilize
the flow by damping concentration waves. The first term in xi dominates at long waves (small
k,k 6 kmax set to 1) and low spacing, while the second at short waves and larger spacing (compare
A1 and A2 in (3.3.5)).

3.3.3. Dynamic waves
When the inviscid forces dominate, (3.3.4) reduces to
wt ¼ �aA4;1þ2/xx � aA5/xxxx � A6wx � A7wxxx ðmomentumÞ. ð3:3:12Þ

As before, we want to merge the mass and momentum equations. For simplicity, the reference
frame fixed with the chain is considered (U = 0 and V = w), where (3.3.3) reads
/t ¼ �/0wx ðmassÞ. ð3:3:13Þ

Taking o/ot of (3.3.12) and several o/ox of (3.3.13) enables to eliminate / from (3.3.12), and

gives the dynamic equation of small motions in terms of w,
wtt ¼ a/0A4;1þ2wxxx þ a/0A5;1wxxxxx � A6wtx � A7wtxxx ðmomentumþmassÞ. ð3:3:14Þ

The dispersion relation of (3.3.14) reads
�x2 ¼ �a/0A4;1þ2k
3iþ a/0A5;1k

5i� A6xk þ A7xk
3 ð3:3:15Þ
and gives for the imaginary part
b0 þ b2x2
i þ b4x4

i ¼ 0; ð3:3:16Þ

where the coefficients are
b0 ¼ ða/0Þ
2ð�A2

4;1þ2k
6 þ 2A4;1þ2A5;1k

8 � A2
5;1k

10Þ;
b2 ¼ A2

6k
2 � 2A6A7k

4 þ A2
7k

6;

b4 ¼ 4.

ð3:3:17Þ
Consequently, the typically nonzero solution
xi ¼ �½ð1=8Þð�b2 � ðb22 � 16b0Þ1=2Þ�1=2 ð3:3:18Þ
generates both damping and growing factors in the wave, so that the uniform state is not
stable. Long dynamic waves can propagate freely, since at k! 0 also xi turns to zero. The
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nearest- neighbour approximation does not bring any notable simplification to (3.3.18), and gives
the same result.

3.3.4. Stability of bubbly chain flow
The kinematic and dynamic modes are the two limiting cases. Here, the stability of the uni-

form bubbly chain flow is investigated, where both the viscous and inviscid forces are consid-
ered. Small disturbances to the homogeneous state may be resolved into independent Fourier
modes,
/ ¼ U exp½ikðx� ctÞ�; w ¼ W exp½ikðx� ctÞ�; ð3:3:19Þ

where the wave number k is real but the phase speed c is complex. Putting (3.3.19) into (3.3.3)
moving with the chain (U = 0), and into (3.3.4), gives two equations for the amplitudes U and W,
ð�ikcÞU þ ðik/0ÞW ¼ 0;

½ikaðA1 � k2A2Þ þ k2aðA4 � k2A5Þ�U þ ½ikðc� A6 þ k2A7Þ � A3�W ¼ 0.
ð3:3:20Þ
The condition for existence of a nonzero solution of (3.3.20) is the zeroness of the determinant.
It gives the quadratic equation for the growth factor c,
c2 þ ðk1 þ ik2Þcþ ðk3 þ ik4Þ ¼ 0 ð3:3:21Þ

with the solution
c ¼ ð1=2Þ½�ðk1 þ ik2Þ � fðk1 þ ik2Þ2 � 4ðk3 þ ik4Þg1=2� ð3:3:22Þ

or, equivalently,
c ¼ ð1=2Þ �k1 � ik2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k5 þ ik6

ph i
ð3:3:23Þ
with the real and imaginary parts
cr ¼ ð1=2Þ �k1 �
ffiffiffiffiffiffiffiffi
1=2

p
ððk25 þ k26Þ

1=2 þ k5Þ1=2
h i

;

ci ¼ ð1=2Þ �k2 �
ffiffiffiffiffiffiffiffi
1=2

p
ððk25 þ k26Þ

1=2 � k5Þ1=2
h i ð3:3:24Þ
using the following notation:
k1 ¼ �A6 þ k2A7; k2 ¼ A3=k; k3 ¼ a/0ðA1 � k2A2Þ; k4 ¼ �a/0kðA4 þ k2A5Þ;
k5 ¼ k21 � k22 � 4k3; k6 ¼ 2k1k2 � 4k4.

ð3:3:25Þ
The uniform state is stable if
ciðk; s;Re; h;mÞ < 0. ð3:3:26Þ

In (3.3.24), the root ci with the minus sign is always negative and gives a stable solution. The other
root with the plus sign can be either negative or positive, and is therefore relevant for the stability.
The root is typically positive, and rarely it takes negative values for a limited band of wave num-
bers. The main result thus is that the uniform state is unstable, see Fig. 7a. The dependence ci(k) is
shown in
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Fig. 7. Bubbly chain flow. (a) Stability diagram in parameter plane s–Re, and (b)–(e) Plot of growth factor ci versus
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(Fig. 7b–e) In the nearest-neighbour approximation, a stabilizing tendency of small s and large
Re is seen in Fig. 7b and c. The same tendency was found also with the discrete and continuous
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chains (Figs. 3 and 10a). On the other hand, in sharp contrast with these two cases, is the fact that
the distant viscous coupling can stabilize the bubbly flow. Indeed, at strong coupling, an interval
of wave numbers where the growth factor is negative is seen in Fig. 7d. At the same time, however,
the positive values of the growth factor are considerable larger than without the coupling. This
demonstrates the ambiguous role played by the distant viscous forces in the stability, firstly
encountered in Section 3.3.2. The effect of the distant inertial coupling is unambiguous: it desta-
bilizes the flow by increasing the growth factor, see Fig. 7e. The similar effect was also found for
the continuous chain see (Fig. 10f). The bubbly chain flow is more sensitive to the viscous cou-
pling than to the inviscid one; compare values of h and m in Figs. 7d and e.

The forces responsible for the instability of the bubbly chain flow can be identified. The nega-
tiveness of ci in (3.3.24) is ensured by a large value of k2, which is the primary stabilizing factor
generated by the drag force (coefficient A3). The structure of the discriminator is too complicated
to tell the role of the individual forces. However, substituting from (3.3.25) into (3.3.24) and rear-
ranging yields the stability condition in a useful polynomial form:
Table
Chain

Lengt

Discr
Conti
Bubb

Separ
(Loca
stable
P ðkÞ � b0 þ b2k
2 þ b4k

4 þ b6k
6 þ b8k

8 < 0; ð3:3:27Þ

where
b0 ¼ A1A
2
3; b2 ¼ �ðA2A

2
3 þ A3A4A6Þ; b4 ¼ a/0A

2
4 þ A3A4A7 � A3A5A6;

b6 ¼ 2a/0A4A5 þ A3A5A7; b8 ¼ a/0A
2
5. ð3:3:28Þ
At small k, P(k) � b0 is positive so that the basic state is unstable with respect to long waves. b0
equals A1A

2
3 where A1 is the shielding force and A3 is the drag force. Thus the shielding instability

occurs also on the macroscale. At larger k, (note that k 6 kmax = 1) the positive higher terms
contribute to the instability too.
4. Discussion

4.1. Stability and scales

The stability results obtained for bubble chain on the three different length scales are presented
in Tables 1, 3 and 4. We can see that the stability features depend on the scale considered, despite
4
stability and length scales: microscale—row 1, mesoscale—row 2, macroscale—row 3

Local Local + Distant

Vis Pot Full Vis Pot Full

h scale increases: ??????y
ete chain u n s/u u n s/u 1
nuous chain n n s/u u n s/u 2
ly chain flow u u u u/s u u 3

ately are given results for nearest-neighbour approximation (Local) and for effects of distant coupling
l + Distant), and, for forces of different origin: viscous (Vis), potential (Pot), both (Full). Legend. Stability: s—
, u—unstable, n—neutrally stable, n/u—either n or u depending on values of s and Re.
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the fact that the system under study is �physically the same�, which is a kind of paradox. The rea-
son is that on each scale a different model for the system is employed, which is compatible with the
size of the system. Different models are represented by different governing equations, whose solu-
tions have different properties. In case of bubble chain, the stability is given by the proportion
between the stabilizing and the destabilizing forces. This proportion is given by the magnitude
of the force coefficients, and this magnitude depends on the scale. For instance, the coefficient
at the shielding force equals (3/4)C 0 on microscale, (3/4)sC 0 on mesoscale, and (3/8)s3C 0 on mac-
roscale, as follows from Eqs. (3.1.2), (3.2.4) and (3.3.4). This indicates that this force increases
with the scale as 1, s, s3. Each force changes according to its particular relation to the length scale.
Heuristically, we can form a �stability ratio� of the two most relevant forces, SR = (drag)/(shield-
ing), and plot it versus the scale. Fig. 8 then shows a decrease in stability with the length scale (C/
C 0 ! C/sC 0 ! C/s3C 0). This trend corresponds to that in mechanical systems, where, put rather
plainly, �the same forces hold together still bigger and bigger piece of matter�. The actual results
show a severe drop in stability at the step micro! macro, as it is evident from comparison of
Figs. 3 and 7a. On the mesoscale, the stability increases, see Fig. 10a and Table 4 (row 1 versus
row 2). We cannot expect the full agreement between the results and the prediction based on SR,
since this ratio has only a indicative value. Also, the stability is measured by the size of the area of
the stable region in the parameter plane s–Re, which is natural, but may not be completely correct.
s as the discrete length scale may not be a fully relevant quantity for the continuous models.

The multiscale methodology introduced here and demonstrated in the case of bubbles in liquids
applies generally to arrays of bubbles, drops, and solids. This approach is in line with the present
efforts spent on respecting the variety of different length and time scales occurring in complex sys-
tems. There are several other attempts made in multiphase systems (e.g. Li and Kwauk, 2001;
Hoef et al., 2004), and in particular in gas–liquid systems (e.g. Sugiyama et al., 2001; Zun,
2002; Deen et al., 2004).

This study is limited to the linear analysis of the uniform particle lattice subjected to hydrody-
namic forces. However, bubble chain is a nonlinear dissipative system and displays features of the
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Fig. 8. Scale effect on chain stability. Stability ratio SR versus length scale. Other parameters: s = 5, Re = 100.
Decreasing trend remains also for other values of s and Re.



1086 M.C. Ruzicka / International Journal of Multiphase Flow 31 (2005) 1063–1096
deterministic chaos, like the corresponding mechanical analogue. Chaotic behaviour of bubble
chain was demonstrate numerically in R1 and was also found in experiments (Li et al., 1997).

4.2. Stability and elasticity

We found that the wake interaction force produces the shielding instability, which is persistent
with respect to the change of the length scale. The stability can be related to the elasticity property
of the bubbly suspension, which is a general concept, independent of a particular configuration of
the dispersed particles and value of Re.

4.2.1. Viscous elasticity
Microscale. The discrete shielding force Dd generates the following dynamics
€ui ¼ �ð3=4ÞC0ðuiþ1 � uiÞ ðC0 > 0Þ. ð4:1Þ

Formally, this force is similar to �one-half� of the elastic restoring force Pd, the half coming from

the preceding neighbour,
€ui ¼ þð3=4ÞC0
pðuiþ1 � uiÞ ðC0

p > 0Þ. ð4:2Þ
As follows from (3.1.4), the physical meaning of C0
p is the spring stiffness, and its product with s

is the spring modulus of elasticity, see (3.1.4). Thus, the force coefficient in (4.1) can also be inter-
preted in this way, saying that
E1 ¼ ð3=4ÞsC0 ð4:3Þ

is the microscale elasticity modulus generated by the viscous shielding (C 0 = 72Re�1.5(s�2)�1.6).
The chain, as an elastic medium, supports propagation of density waves with speed
c1 ¼ ðE1=q1Þ
0.5. ð4:4Þ
Here, the dimensionless linear density of bubble spring is q1 = 1/s, which is mb/d scaled by the
bubble mass mb and radius r.

Mesoscale. The continuous shielding force ux in (3.2.4) gives the equation
utt ¼ �A1;1ux ðA1;1 > 0Þ ð4:5Þ

with the dispersion relation xr = xi = ±(0.5A1,1k)

0.5 and the wave speed c2 = xr/k. The mesoscale
elasticity modulus can then be defined using (4.4) as:
E2 ¼ q1c
2
2 ¼ ð3=8ÞC0=k. ð4:6Þ
Macroscale. The shielding force /x in bubbly chain flow gives
/t þ U/x þ /0wx ¼ 0; ð4:7Þ
wt ¼ aA1;1/x ðaA1;1 > 0Þ; ð4:8Þ
where the growth factor c2 = �aA1,1/0 has real cr = 0 and imaginary ci = ± (aA1,1/0)
0.5

parts. The uniform state is unstable and does not support waves. If we allow for negative
(aA1,1), we obtain cr = ± (aA1,1/0)

0.5 and ci = 0, which enables us to introduce the macroscale
modulus
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E3 ¼ qmc
2
r ¼ 3C0ð1� /0Þ=/2

0; ð4:9Þ

where the dimensionless gas–liquid mixture density qm � (1 � /0).

Now Eqs. (4.1), (4.5), (4.8) can be expressed with help of viscous elasticity:
€ui ¼ �ðE1=sÞðuiþ1 � uiÞ ðmicroscaleÞ; ð4:10Þ
utt ¼ �ð2skE2Þux ðmesoscaleÞ; ð4:11Þ
wt ¼ ðE3=/0ð1� /0ÞÞ/x ðmacroscaleÞ: ð4:12Þ
All the Es are positive and the dynamics is unstable since the shielding elastic force accelerates
the bubbles from sparse to dense regions. This is typical for media with negative modulus of elas-
ticity. We can thus conclude, that the shielding instability is equivalent to the negative bulk mod-
ulus of elasticity of the bubbly mixture. The sign of the viscous force proportional to the
concentration gradient depends on the sign of dC/ds, which is opposite for shielding and hin-
drance, see Fig. 2. For particles with hindered motion, this force term stabilizes the system.

4.2.2. Inviscid elasticity
Besides the above elasticity of viscous origin, there also is elasticity of inviscid origin, generated

by the potential repulsive force. In the discrete chain, it is due to Pd, which gives (3.1.4) and the
modulus
Ep1 ¼ ð3=4ÞsC0
p ðC0

p ¼ 48s�5Þ. ð4:13Þ
In the continuous chain, the elastic force Pd generates the term uxx in the wave equation (3.2.4)
with speed cp2 = (A4,1)

0.5. The corresponding modulus q1c
2
p2 then reads
Ep2 ¼ ð3=4ÞsC0
p. ð4:14Þ
In the bubbly chain flow, uxx turns into /xx in (3.3.4) and, together with the mass Eq. (3.3.3), it
gives unstable basic state, ci = cr = ± (0.5aA4,1k/0)

0.5. This demonstrates the destabilization of
the potential forces in arrays when increasing the length scale, see Table 4. The corresponding
modulus qmc

2
r becomes
Ep3 ¼ 3kC0
pð1� /0Þ=/3

0. ð4:15Þ
The partial dynamics corresponding to the inviscid elasticity moduli is:
€ui ¼ ðEp1=sÞðuiþ1 � 2ui þ ui�1Þ ðmicroscaleÞ; ð4:16Þ
utt ¼ ðsEp2Þuxx ðmesoscaleÞ; ð4:17Þ
wt ¼ �ð2Ep3=/0ð1� /0ÞÞ/xx ðmacroscaleÞ; ð4:18Þ
where all Eps are, again, positive. After multiplying by qv2, the Es becomes dimensional.
The viscous and inviscid elasticities of the chain differ in their physical origin: the former results

from the dependence of the drag force on bubble spacing, while the latter from the higher pressure
between vertically aligned bubbles. Both are conservative forces and reflect the chain resistance to
the configurational changes. The former is unidirectional (wake suction) and leads to first spatial
derivative. The latter is bidirectional (symmetric repulsion), which naturally leads to second
spatial derivative.
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4.2.3. Remark on literature
Elasticity of both kinds is also reported in the literature, mainly on fluidized bed. The viscous

elasticity was employed in finding a stability criterion for uniform fluidized bed by comparing the
speed of kinematic and dynamic waves, the latter being c = (E/q)0.5. For instance, Verloop and
Heertjes (1970) found E = (4/3)gr(qp �qf)(1 � /) while Foscolo and Gibilaro (1984) derived
E = 6.4 gr(qp � qf)/. These—and all forthcoming—formulas are written in our notation, where
the voidage / denotes the particle (bubble) concentration, in contrast to fluidized bed, where
the particle concentration usually is 1 � /. The dimension of E is [N/m2], which is [den-
sity speed2], so the modulus scales like �qpv

2
p. Both formulas were obtained heuristically, based

on a simple model of a vertical line of interacting particles, with buoyancy, gravity and drag.
The first modulus decreases while the second increases with particle concentration. The reason
is that Verloop and Heertjes� drag decreases with spacing by the Rowe�s relation (shielding), while
Foscolo and Gibilaro�s increases by the Richardson and Zaki�s relation (hindrance).

The inviscid elasticity relates to the particle pressure pp that generates a force ��opp/ox =
�(o pp/o/)/x, where the coefficient is identified with the modulus, E � (opp/o/). Its physical ori-
gin is seen in two different sources: direct particle collisions (mechanical forces) and particle
velocity fluctuations (hydrodynamic forces). The mechanical forces can, under certain situations,
play an important role, namely in gas–solid fluidized bed. For instance, Rietema and Piepers
(1990) advocate these forces arguing that there is no conservative hydrodynamic force to pro-
duce elasticity. They found Ec = qp[qc(3 � 2(1 � /c))/(1 � /c)]

2 [N/m2], where q is the gas super-
ficial velocity and c refers to the particular point of the homogeneous bed instability. Also, they
found a general increasing dependence of E on /, E = E0exp(a(/ � /c)), where 0 denotes a ref-
erence value. The hydrodynamic forces occur in any dispersed system, and are especially relevant
for bubbly mixtures. The random particle fluctuations have many causes and many different
manifestations, which are difficult to classify. Generally, they result from either particle–particle
interactions or from particle–fluid interactions. If the motion is not much correlated, an analogy
with classical thermodynamics my be helpful in providing a guideline for introducing particle
�temperature� and �pressure�. There is an obvious anisotropy due to gravity. Since the particle
fluctuations is difficult to measure or find theoretically, the closures can be obtained by simula-
tions. If the motion displays certain coherent features, important collective phenomena may
emerge on the macroscale, namely the hydrodynamic particle diffusion. Various heuristic formu-
las are used for the particle pressure due to hydrodynamic forces, e.g. pp � / or �//(/max � /),
to reflect the expected increase with the concentration. The corresponding moduli are �const. or
increasing with /.

4.3. Macroscale equations

Soon it was recognized that a force proportional to the concentration gradient /x can stabilize
the uniform basic state of macroscopic governing equations. Such force term was introduced
purely formally, for particles in general positions, because it was beneficial for the system stability.
It comes from the divergence of the particle stress tensor, namely from the normal stresses (par-
ticle pressure). The term wt � �E/x represents a force due to the expected resistance of the mix-
ture to configurational changes. The degree of the mixture �deformation� or �compression� is
expressed by /x . When E > 0, the force tends to smear out concentration gradients by pushing
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the particles from dense to diluted regions, hence stabilizes the uniform state—compare with
(4.12).

The gradient terms are also obtained by a great variety of averaging methods. They differ in
many aspects (average of what over what, assumptions necessary for the statistics, assumptions
about the flow field, formulation of particle interactions, etc.) and face the very fundamental
problems of multiphase mechanics. All basically are a one-step process, micro! macro. A �meso-
scale� parcel of the mixture can be considered to have statistically homogeneous sample to define
the constant mean. These efforts present the main stream in developing the governing bubbly
equations.

The macroscopic governing equations can also be obtained from physical considerations on the
microscale, taking into account those processes involved in the momentum transfer that are cur-
rently known and seem relevant. Here, the terms with /x are related to specific physical mecha-
nisms. As an example of such equations, we present those by Batchelor (1988):
/t þ U/x þ /0wx ¼ 0 ðmassÞ; ð4:19Þ
p1ðwt þ wxÞ ¼ p2wx þ p3wxx � p4/x þ ð1=Fr2Þðp5/ � p6w� p7/xÞ ðmomentumÞ. ð4:20Þ
They are dimensionless, written for small disturbances in 1D flow, for particles in general posi-
tions undergoing both vertical and horizontal interactions that results in the hindrance effect.
The reference frame travels with the mean mixture velocity and with the axis pointing downward.

These should be compared with (3.3.3) and (3.3.4) obtained here for the bubbly chain flow, with
the vertical interactions only, with the typical shielding effect, that in the nearest-neighbour
approximation read:
/t þ U/x þ /0wx ¼ 0 ðmassÞ; ð4:21Þ
wt ¼ ð1=ReÞðq1/x � q2wÞ � q3/xx � q4wx ðmomentumÞ. ð4:22Þ
In (4.20), the terms with the Froude number are noninertial and long-range, while the other are
inertial and short-range. There are two terms related to the elasticity of either origin. Term—p4/x

represents the normal stress due to particles velocity fluctuations, and term—(1/Fr2)p7/x corre-
sponds to the hydrodynamic diffusion. Both stabilize the uniform state provided that the coeffi-
cients p4 and p7 are positive. The expression for these two are based on scale estimates. In
(4.22), the terms with the Reynolds number are viscous and long-range, while the other are invis-
cid and short-range. There also are two elastic terms of either origin. Term + (1/Re)q1/x is the
viscous shielding and �q3/xx the inviscid repulsion. Both destabilize the system. The coefficients
are positive and expressed rigorously.

Besides the elasticity, both Eqs. (4.20) and (4.22), also have acceleration, wt, wx, and drag, w.
On the other hand, (4.20) has buoyancy / and particle viscosity wxx. The buoyancy is not in
(4.22) because of the choice of the reference frame. The term wxx reflects the conformational resis-
tance due to shear stresses in the fluid, not considered in (4.22), where the bubbles move through a
stagnant liquid.

Although the model (4.20) is based on a detailed list of relevant physical processes, it is very
difficult to state clearly and unequivocally whether the list is complete, which of them are indepen-
dent, which interfere and to what extent, and how the closure formulas should look like. This
is quite apparent when reading the Batchelor�s paper. In this context, certain comparative
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advantages of the approach presented in this study can be seen. It is relatively easy to follow the
changes of the few basic forces when moving from micro to macro scale. No statistics is needed,
since the averaging procedures are avoided. It will work also for 2D and 3D cases, once we cor-
rectly know the particle interaction forces at the leading order. Efforts in this respect are currently
under way.

Note that considering the distant coupling results in higher spatial derivatives, which formally
could appear in previous derivations, but their physical content was not substantiated. Now we
have a physical mechanism that causes dispersion, and, consequently, could lead to voidage soli-
tary waves, which, unlike in fluidized beds, have not been observed in bubbly flows. It could hap-
pen when the vertical interactions will be able to produce certain level of dynamic coherency on
longer spatial scales. Let us hunt for bubbly solitons!
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Appendix A. Stability of mesoscale model

The mesoscale momentum equation (3.2.4) contains seven coefficients of different origin:
A1¼ðDdþV dÞ¼0.75s½C0 þhð2C	0
2 þ3C	0

3 þ4C	0
4 Þ��Re�1.5ðs�0.6þexpð�s=ReÞÞ;

A2¼ðV dÞ¼hs3ð3.37C	0
3 þ8C	0

4 Þ� s3Re�1.5 expð�s=ReÞ;

A3¼ðDvþV vÞ¼1.5ðC�hC	Þ�ðRe�1�Re�1.5Þ�s�0.6Re�1.5;

A4¼ðPdþLRdþV dÞ¼ s2½0.75C0
pþ0.133mC0

p�hð1.5C	0
2 þ3.37C	0

3 þ6C	0
4 Þ�� s�3�s2Re�1.5 expð�s=ReÞ;

A5¼ðLRdþV dÞ¼ s4ð0.067mC0
p�8hC	0

4 Þ� s�1�s4Re�1.5 expð�s=ReÞ;

A6¼ðPvþLRvÞ¼ sCpð3þ0.532mÞ� s�3;

A7¼ðLRvÞ¼0.541ms3Cp� s�1;

ðA:1Þ
The discrete source-forces of the coefficients are indicated in the parenthesis—they determine
the physical content of the As, see Table 3. The coefficients A2, A5 and A7 are produced by the
distant forces and are linear in h and m. The other involve both local (A1,1,A3,1,A4,1,A6,1) and dis-
tant (A1,2,A3,2,A4,2+3,A6,2) contributions. Here, An,k denotes the kth summand in An and all
these summands are positive and correspond to the individual source-forces. Also, An,k+m denotes
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An,k + An,m. A1–A3 are purely viscous and decrease with increasing Re. A6–A7 are purely inviscid
and independent of Re. A4 and A5 are of a mixed origin: A4,1 + 2 and A5,1 are inviscid and A4,3 and
A5,2 are viscous. The coefficients A1–A3, A6 and A7 are positive; A3 must be to keep its physical
meaning. A4 and A5 can be negative at strong viscous coupling. The typical magnitude of the coef-
ficients is 10�2–100 and depends strongly on the parameters s and Re, as indicated in Eq. (A.1).
With increasing s, all coefficients but A3 (total drag) tend to zero asymptotically. Only A1, A6 and
A7 fall monotonously. A2 goes through a maximum, while A4 and A5 go through a minimum. A3

rises with s and saturates at the value of the single bubble drag. The viscous coupling h influences
the coefficients strongly and is more important than the inviscid coupling m. The relative magni-
tude of the coefficients is important for the chain behaviour. The viscous terms (long-range and
Re-dependent) can be separated from the inviscid terms (short-range and Re-independent) by
either decreasing Re or increasing s.

The stability of the basic state, the uniform spacing u(x, t) � 0, is tested by inserting the
wave solution �exp[i(kx � xt)] into the governing equation (3.2.4), which gives the dispersion
relation:
�x2 ¼ �A1kiþ A2k
3iþ A3xi� A4k

2 þ A5k
4 � A6xk þ A7xk

3. ðA:2Þ

The stability features of the individual terms in (3.2.4) are shown in Table 3.
Viscous waves: When the viscous forces dominate, (3.2.4) reduces to
0 ¼ �A1ux � A2uxxx � A3ut � A4;3uxx ðA:3Þ

and the dispersion equation
0 ¼ �A1kiþ A2k
3iþ A3xiþ A4;3k

2 ðA:4Þ

gives
xr ¼ ðA1=A3Þk � ðA2=A3Þk3; ðA:5Þ
xi ¼ ðA4;3=A3Þk2 P 0. ðA:6Þ
In the nearest-neighbour approximation (A2,A4,3 = 0), xi = 0 and the uniform state is neutrally
stable, for the first time with the viscous forces. The viscous waves ut + (A1,1/A3,1)ux = 0 propa-
gate freely at the speed c = (A1,1/A3,1) � (local shielding/drag). These are the continuity waves
with which the viscous dissipation, as a dynamical process, does not interfere. With the distant
forces, xi > 0 and the chain is unstable due to the viscous coupling A4,3 � (distant shielding).
The other distant term, A2, causes the normal dispersion in xr.

Inviscid waves: When the inviscid forces dominate, (3.2.4) reduces to
utt ¼ A4;1þ2uxx þ A5;1uxxxx � A6utx � A7utxxx; ðA:7Þ

which gives the dispersion relation with xi = 0. The uniform state is thus neutrally stable and sup-
ports inviscid waves. The real part, responsible for dispersion, obeys
�x2
r ¼ �A4;1þ2k

2 þ A5;1k
4 � A6xrk þ A7xrk

3. ðA:8Þ

In the nearest-neighbour approximation, the frequency is
xr ¼ ð1=2ÞkðA6;1 � ðA2
6;1 þ 4A4;1ÞÞ0.5 ðA:9Þ
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and the waves propagate without dispersion. The distance-related force (Pd) itself recovers the
standard wave equation utt = A4,1uxx with two modes xr = ±(A4,1)

0.5k. The velocity-related force
(Pv) gives the equation utt = �A6,1utx with only one mode xr = A6,1k.

The distant coupling causes the normal dispersion by the higher spatial derivatives. The
distance-related force (Pd + mLRd) has
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Fig. 9. Continuous chain. Effect of inertial coupling m on inviscid waves. (a) Dispersion relation (A9) (s = 5). Black
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xr ¼ �kðA4;1þ2 � A5;1k
2Þ0.5. ðA:10Þ
The waves can propagate for k < kc = (A4,1 + 2/A5,1)
0.5 = s�1(1.98 + 11.1/m)0.5, where xr is real

and nonzero. The value of kc decreases with the coupling strength m, see Fig. 9a. At zero coupling
(m = 0), kc is infinite and the spectrum is not limited from above. There is, however, a physical
limit on k given by the scaling: the wave cannot be shorter than the bubble size, so that the dimen-
sionless k must be smaller than kmax � O(1). At the extreme coupling (m !1), kc � 1.4/s and the
wavelength must be larger then kc = 2p/kc � 4.45s. Beyond kc, xr would be complex, which is not
allowed. The velocity-related force (Pv + mLRv) gives one mode
xr ¼ kðA6 � A7k
2Þ ðA:11Þ
and the spectrum is limited by kc = (A6/A7)
0.5 = s�1(0.983 + 5.54/m)0.5. At the extreme coupling,

it gives kc � 6.33s.
Eq. (A.7) of the total inviscid force has two branches of solution
xr;1;2 ¼ ð1=2ÞðA6k � A7k
3 �

ffiffiffiffiffiffiffiffi
Dis

p
Þ; Dis ¼ ð�A6k þ A7k

3Þ2 þ 4ðA4;1þ2k
2 � A5;1k

4Þ; ðA:12Þ
that differ slightly at lower spacing and become ± symmetric at higher spacing, see Figs. 9b and c.
Stability of continuous chain: The full dispersion relation (A.2) yields a quartic equation for the

imaginary part
c0 þ c1xi þ c2x2
i þ c3x3

i þ c4x4
i ¼ 0; ðA:13Þ
where the coefficients are
c0 ¼ ð�A2
1 þ A2

3A4 þ A1A3A6Þk2 þ ð2A1A2 � A2
3A5 � A2A3A6 � A1A3A7Þk4 þ ð�A2

2 þ A2A3A7Þk6;
c1 ¼ A3

3 þ ð4A3A4 þ A3A
2
6Þk2 � ð4A3A5 þ 2A3A6A7Þk4 þ A3A

2
7k

6;

c2 ¼ 5A2
3 þ ð4A4 þ A2

6Þk2 � ð4A5 þ 2A6A7Þk4 þ A2
7k

6;

c3 ¼ 8A3;

c4 ¼ 4. ðA:14Þ
The uniform state is stable when xi(k, s,Re,h,m) < 0, i.e. for all k 6 kmax = 1. Typically, the first
root of (A.12) is negative, the other two are either real negative or complex (unphysical), and the
stability decisive fourth root is either negative or positive, depending on the parameters. The final
result is in Fig. 10a, where the parameter plane s–Re is divided into the stable and unstable re-
gions. The main source of the instability is the shielding force, accelerating the bubbles from
sparse to dense regions, utt � �ux. Qualitatively, Fig. 10a is similar to Fig. 3 for the discrete
chain: the stable region occurs at low s and high Re and is considerably reduced by the distant
coupling. On the other hand, the numerical values of the critical spacing in Fig. 10a are by one
order larger comparing with Fig. 3. The fourth root is plotted in Fig. 10b–f. In the nearest-neigh-
bour approximation, the destabilizing effect of the spacing is demonstrated in Fig. 10b. The lines
start in the origin and fall or rise monotonously. The instability due to the viscous coupling occurs
at long waves, as shown in Fig. 10c and d. In contrast, the instability due to the inertial coupling
begins at short waves, as shown in Fig. 10e and f. This reflects the difference between the long- and
short-range character of the viscous and inviscid forces. The chain is relatively sensitive to both
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the viscous and inviscid couplings and even small values of h and m produce considerable effects.
Unlike with the discrete chain, where the viscous effects were much stronger, the impacts of both
couplings are comparable at the continuous chain (c.f. Fig. 10d and f). The full chain cannot sup-
port waves because xi is typically nonzero. The rare exception is the vicinity of the critical lines in
Fig. 10a, where xi = 0 at some value of k. Also, in the long wave limit k = 0, the value xi = 0
solves (A.12).

Despite the fact that the mesoscale concept (single string after the continuum limit) may look
somewhat artificial, the stability analysis of the continuous chain gives valuable information
about the underlying processes. Similar investigation has been done for granular flows, where
both linear and nonlinear waves are studied theoretically for a continuous chain of particles
(Hinch and Saint-Jean, 1999). Likely, the first mesoscale treatment of gas–liquid systems is done
in the present study. On the experimental side, one needs a long enough chain to consider it truly
continuous, as mentioned in Section 3.2. Another way to the continuity leads via bubbles that are
connected to one another, which can occur e.g. in polymeric liquids (Kliakhandler, 2002). Con-
ceptually, the meso-scale concept is not dissimilar to what is called �intermediate asymptotics�
(Barenblatt, 1996): ‘‘. . .The analogy with painting is made: we stand far enough back for the
brush strokes to be invisible, but close enough to appreciate the art. . .’’.
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